Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Tìm số tự nhiên \(a\) nhỏ nhất sao cho khi chia \(a\) cho \(7\); cho \(13\); cho \(17\) có số dư lần

Câu hỏi số 380873:
Vận dụng cao

Tìm số tự nhiên \(a\) nhỏ nhất sao cho khi chia \(a\) cho \(7\); cho \(13\); cho \(17\) có số dư lần lượt là \(4;\,\,11;\,\,14\).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:380873
Phương pháp giải

- Gọi số cần tìm là \(a\) \(\left( {a \in \mathbb{N}} \right)\).

- Nhận xét \(a + 3 \in BC\left( {7;17} \right)\). Từ đó tìm tập hợp bội chung của \(7,17\) và kiểm tra điều kiện chia cho \(13\) dư \(11\).

Giải chi tiết

Gọi số cần tìm là \(a\) \(\left( {a \in \mathbb{N}} \right)\).

Vì \(a\) chia cho \(7\) dư \(4\) nên \(\left( {a + 3} \right) \vdots 7\)

Vì \(a\) chia cho \(17\) dư \(14\) nên \(\left( {a + 3} \right) \vdots 17\)

Suy ra \(a + 3 \in BC\left( {7;17} \right)\).

Mà \(BCNN\left( {7;17} \right) = 7.17 = 119\) nên \(BC\left( {7;17} \right) = \left\{ {0;119;238;357;476;595;714;833;...} \right\}\)

Từ bảng ta thấy \(a = 830\).

Vậy số cần tìm là \(830\).

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K13 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 6 chương trình mới trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 6 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com