Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho số tự nhiên \(A\) gồm \(4030\) chữ số \(1\), số tự nhiên \(B\) gồm \(2015\) chữ số \(2\).

Câu hỏi số 380892:
Vận dụng cao

Cho số tự nhiên \(A\) gồm \(4030\) chữ số \(1\), số tự nhiên \(B\) gồm \(2015\) chữ số \(2\). Chứng minh rằng \(A - B\) là một số chính phương.

Quảng cáo

Câu hỏi:380892
Phương pháp giải

Gọi \(C = \underbrace {111111.....11}_{2015\,chu\,so\,1}\). Ta biểu diễn \(A\) và \(B\) theo \(C.\) Từ đó tính hiệu \(A - B\)  để suy ra đó là số chính phương.

Giải chi tiết

Gọi \(C = \underbrace {111111.....11}_{2015\,chu\,so\,1}\).

Vì \(B = \underbrace {2222.....22}_{2015\,chu\,so\,2}\) nên \(B = 2.C\).

Ta có : \(A = \underbrace {11111......1}_{4030\,chu\,so\,1} = \underbrace {11111......11}_{2015\,chu\,so}\underbrace {00........0}_{2015\,chu\,so} + \underbrace {11111......1}_{2015\,chu\,so}\) \( = C{.10^{2015}} + C\)

Khi đó : \(A - B = C{.10^{2015}} + C - 2C\)\( = C{.10^{2015}} - C = C.\left( {{{10}^{2015}} - 1} \right)\)

Mà \({10^{2015}} - 1 = \underbrace {99999......9}_{2015\,chu\,so} = 9.C\)

Do đó \(A - B = C.9C = 9{C^2} = {\left( {3C} \right)^2}\).

Vậy \(A - B\) là số chính phương.

Tham Gia Group Dành Cho 2K13 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 6 chương trình mới trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 6 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com