Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho các hàm số \(y = {a^x}\) và \(y = {b^x}\) với \(a,b\) là những số thực dương khác 1 có đồ

Câu hỏi số 381281:
Thông hiểu

Cho các hàm số \(y = {a^x}\) và \(y = {b^x}\) với \(a,b\) là những số thực dương khác 1 có đồ thị như hình vẽ. Đường thẳng \(y = 3\) cắt trục tung, đồ thị hàm số \(y = {a^x}\) và \(y = {b^x}\) lần lượt tại \(H,M,N\). Biết rằng \(2HM = 3MN\), khẳng định nào sau đây đúng?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:381281
Phương pháp giải

Độ dài \(HM\) bằng giá trị của \({x_1}\) sao cho \({a^{{x_1}}} = 3\), độ dài \(HN\) bằng giá trị của \({x_2}\) sao cho \({b^{{x_2}}} = 3\)

Tìm mối liên hệ của \(a,b\) qua điều kiện \(2HM = 3MN\)

Giải chi tiết

Đường thẳng \(y = 3\) cắt trục tung, đồ thị các hàm số \(y = {a^x}\) và \(y = {b^x}\) lần lượt tại \(H,M,N\) nên ta có :

\(\left\{ \begin{array}{l}{a^{HM}} = 3\\{b^{HN}} = 3\end{array} \right. \Rightarrow {a^{HM}} = {b^{HN}}\)

Theo giả thiết, \(2HM = 3MN \Leftrightarrow HM = \dfrac{3}{2}MN \Rightarrow HM = \dfrac{3}{5}HN\)

Do đó  \({a^{HM}} = {b^{HN}} \Leftrightarrow {a^{HM}} = {b^{\dfrac{5}{3}HN}} \Leftrightarrow a = {b^{\dfrac{5}{3}}} \Leftrightarrow {a^3} = {b^5}\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com