Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(2a\), cạnh bên bằng \(3a\). Tính thể

Câu hỏi số 381809:
Vận dụng

Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(2a\), cạnh bên bằng \(3a\). Tính thể tích \(V\) của khối chóp đã cho.

Đáp án đúng là: D

Câu hỏi:381809
Phương pháp giải

Áp dụng công thức tính thể tích hình chóp \({V_{chop}} = \dfrac{1}{3}{S_{day}}.h\).

Giải chi tiết


Gọi \(O = AC \cap BD \Rightarrow SO \bot \left( {ABCD} \right)\).

Khi đó ta có \(AO = \dfrac{{AC}}{2} = \dfrac{{2a\sqrt 2 }}{2} = a\sqrt 2 \)

Xét tam giác \(SAO\) vuông tại \(O\) có \(AO = a\sqrt 2 ;\,\,\,SA = 3a.\)

Áp dụng định lí Pytago ta có: \(SO = \sqrt {S{A^2} - A{O^2}} \)\( = \sqrt {{{\left( {3a} \right)}^2} - {{\left( {a\sqrt 2 } \right)}^2}} \) \( = a\sqrt 7 \).

Diện tích hình vuông \(ABCD\) là \({S_{ABCD}} = {\left( {2a} \right)^2} = 4{a^2}\).

Vậy \({V_{S.ABCD}} = \dfrac{1}{3}.SO.{S_{ABCD}} = \dfrac{1}{3}.a\sqrt 7 .4{a^2} = \dfrac{{4\sqrt 7 {a^3}}}{3}.\)

Tham Gia Group Dành Cho 2K7 luyện thi Tn THPT - ĐGNL - ĐGTD

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com