Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Trong mặt phẳng tọa độ Oxy, cho các điểm \(A\left( {m; - 1} \right),\) \(B\left( {2;\,\,1 - 2m} \right),\) \(C\left( {3m + 1; - \frac{7}{3}} \right).\) Biết rằng có hai giá trị \({m_1},\,\,{m_2}\) của tham số m để A, B, C thẳng hàng. Tính \({m_1} + {m_2}.\)

Câu 382942:

Trong mặt phẳng tọa độ Oxy, cho các điểm \(A\left( {m; - 1} \right),\) \(B\left( {2;\,\,1 - 2m} \right),\) \(C\left( {3m + 1; - \frac{7}{3}} \right).\) Biết rằng có hai giá trị \({m_1},\,\,{m_2}\) của tham số m để A, B, C thẳng hàng. Tính \({m_1} + {m_2}.\)

A. \( - \frac{1}{6}\)                 

B. \( - \frac{4}{3}\)       

C. \(\frac{{13}}{6}\)

D.

\(\frac{1}{6}\)

Câu hỏi : 382942

Phương pháp giải:

Ba điểm  A, B, C thẳng hàng \( \Leftrightarrow \overrightarrow {AB}  = k\overrightarrow {AC} \,\,\,\left( {k \in \mathbb{R},\,\,k \ne 0} \right).\) 

  • Đáp án : D
    (3) bình luận (0) lời giải

    Giải chi tiết:

    Ta có: \(\left\{ \begin{array}{l}\overrightarrow {AB}  = \left( {2 - m;\,\,2 - 2m} \right)\\\overrightarrow {AC}  = \left( {2m + 1;\,\, - \frac{4}{3}} \right)\end{array} \right..\)

    Ba điểm  A, B, C thẳng hàng \( \Leftrightarrow \overrightarrow {AB}  = k\overrightarrow {AC} \,\,\,\left( {k \in \mathbb{R},\,\,k \ne 0} \right)\) 

    \(\begin{array}{l} \Leftrightarrow \left( {2 - m;\,\,2 - 2m} \right) = k\left( {2m + 1; - \frac{4}{3}} \right)\\ \Leftrightarrow \left\{ \begin{array}{l}2 - m = k\left( {2m + 1} \right)\\2 - 2m =  - \frac{4}{3}k\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k = \frac{{3\left( {m - 1} \right)}}{2}\\2 - m = \frac{{3\left( {m - 1} \right)}}{2}\left( {2m + 1} \right)\,\,\,\,\left( * \right)\end{array} \right.\\ \Rightarrow \left( * \right) \Leftrightarrow 4 - 2m = 6{m^2} + 3m - 6m - 3\\ \Leftrightarrow 6{m^2} - m - 7 = 0\\ \Leftrightarrow \left( {6m - 7} \right)\left( {m + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}6m - 7 = 0\\m + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = \frac{7}{6}\\m =  - 1\end{array} \right.\\ \Rightarrow {m_1} + {m_2} = \frac{7}{6} - 1 = \frac{1}{6}.\end{array}\)

    Đáp án  D.

    Lời giải sai Bình thường Khá hay Rất Hay
Xem bình luận

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com