Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm số hạng không chứa \(x\) trong khai triển của biểu thức \({\left( {x\sqrt x  + \frac{1}{{{x^4}}}}

Câu hỏi số 384341:
Thông hiểu

Tìm số hạng không chứa \(x\) trong khai triển của biểu thức \({\left( {x\sqrt x  + \frac{1}{{{x^4}}}} \right)^{11}}\) với \(x > 0\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:384341
Phương pháp giải

Sử dụng khai triển nhị thức Niuton: \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^k}{b^{n - k}}} \).

Giải chi tiết

Ta có:

\(\begin{array}{l}{\left( {x\sqrt x  + \frac{1}{{{x^4}}}} \right)^{11}} = {\left( {{x^{\frac{3}{2}}} + {x^{ - 4}}} \right)^{11}}\,\,\left( {0 \le k \le 11,\,\,k \in \mathbb{N}} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \sum\limits_{k = 0}^{11} {C_{11}^k{{\left( {{x^{\frac{3}{2}}}} \right)}^{11 - k}}{{\left( {{x^{ - 4}}} \right)}^k}} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \sum\limits_{k = 0}^{11} {C_{11}^k{x^{\frac{{33 - 3k}}{2}}}{x^{ - 4k}}} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \sum\limits_{k = 0}^{11} {C_{11}^k{x^{\frac{{33 - 11k}}{2}}}} \end{array}\)

Số hạng không chứa \(x\) trong khai triển ứng với  \(\frac{{33 - 11k}}{2} = 0 \Leftrightarrow k = 3\).

Vậy số hạng không chứa \(x\) trong khai triển trên là \(C_{11}^3 = 165\). 

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com