Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian \(Oxyz,\) cho hai vectơ \(\overrightarrow a  = \left( {1;2;1} \right),\,\,\overrightarrow b  =

Câu hỏi số 384485:
Vận dụng

Trong không gian \(Oxyz,\) cho hai vectơ \(\overrightarrow a  = \left( {1;2;1} \right),\,\,\overrightarrow b  = \left( { - 2;m;3} \right).\) Biết rằng góc giữa hai vectơ đó bằng \({60^0}\) khi \(m = \dfrac{{a + \sqrt b }}{5},\,\left( {a,\,\,b \in \mathbb{Z}} \right)\). Tính \(a + b.\)

Đáp án đúng là: C

Quảng cáo

Câu hỏi:384485
Phương pháp giải

Cho hai vecto \(\overrightarrow a \left( {{x_1};\,\,{y_1};\,\,{z_1}} \right),\,\,\,\overrightarrow b  = \left( {{x_2};\,\,{y_2};\,\,{z_2}} \right).\) Khi đó \(\alpha  = \angle \left( {\overrightarrow a ;\,\,\overrightarrow b } \right)\) có:

\(\cos \alpha  = \dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \dfrac{{{x_1}{x_2} + {y_1}{y_2} + {z_1}{z_2}}}{{\sqrt {x_1^2 + y_1^2 + z_1^2} .\sqrt {x_2^2 + y_2^2 + z_2^2} }}.\)

Giải chi tiết

Ta có: \(\overrightarrow a  = \left( {1;\,\,2;\,\,1} \right),\,\,\overrightarrow b  = \left( { - 2;\,\,m;\,\,3} \right);\,\,\,\angle \left( {\overrightarrow a ;\,\,\overrightarrow b } \right) = {60^0}\)

\(\begin{array}{l} \Rightarrow \cos {60^0} = \dfrac{{1.\left( { - 2} \right) + 2.m + 1.3}}{{\sqrt {1 + {2^2} + 1} .\sqrt {{{\left( { - 2} \right)}^2} + {m^2} + {3^2}} }} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{2m + 1}}{{\sqrt {6\left( {13 + {m^2}} \right)} }} = \dfrac{1}{2} \Leftrightarrow 4m + 2 = \sqrt {6\left( {13 + {m^2}} \right)} \\ \Leftrightarrow \left\{ \begin{array}{l}4m + 2 \ge 0\\{\left( {4m + 2} \right)^2} = 6\left( {13 + {m^2}} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ge  - \dfrac{1}{2}\\16{m^2} + 16m + 4 = 78 + 6{m^2}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m \ge  - \dfrac{1}{2}\\10{m^2} + 16m - 74 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ge  - \dfrac{1}{2}\\\left[ \begin{array}{l}m = \dfrac{{ - 4 + \sqrt {201} }}{5}\\m = \dfrac{{ - 4 - \sqrt {201} }}{5}\end{array} \right.\end{array} \right. \Leftrightarrow m = \dfrac{{ - 4 + \sqrt {201} }}{5}.\\ \Rightarrow \left\{ \begin{array}{l}a =  - 4\\b = 201\end{array} \right. \Rightarrow a + b =  - 4 + 201 = 197.\end{array}\)

Chọn  C.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com