Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Một sóng cơ lan truyền trên sợi dây từ C đến B với chu kì T = 2 s, biên độ không đổi. Ở

Câu hỏi số 385438:
Vận dụng cao

Một sóng cơ lan truyền trên sợi dây từ C đến B với chu kì T = 2 s, biên độ không đổi. Ở thời điểm t0, ly độ các phần tử tại B và C tương ứng là –20 mm và +20 mm, các phần tử tại trung điểm D của BC đang ở vị trí cân bằng. Ở thời điểm t1, li độ các phần tử tại B và C cùng là +8 mm. Tại thời điểm \({t_2} = {t_1} + 0,4\,\,s\) thì tốc độ dao động của phần tử D có giá trị gần nhất với giá trị nào sau đây

Đáp án đúng là: B

Quảng cáo

Câu hỏi:385438
Phương pháp giải

Sử dụng vòng tròn lượng giác và công thức: \(\Delta t = \dfrac{{\Delta \varphi }}{\omega }\)

Tần số góc của sóng: \(\omega  = \dfrac{{2\pi }}{T}\)

Li độ tại hai thời điểm vuông pha: \({x_1}^2 + {x_2}^2 = {A^2}\)

Công thức độc lập với thời gian: \({v^2} = {\omega ^2}\left( {{A^2} - {u^2}} \right)\)

Giải chi tiết

Tần số của sóng là: \(\omega  = \dfrac{{2\pi }}{T} = \dfrac{{2\pi }}{2} = \pi \,\,\left( {rad/s} \right)\)

Ta có vòng tròn lượng giác:

 

Từ vòng tròn lượng giác, ta thấy

\(\left\{ \begin{array}{l}\widehat {{C_0}O{C_1}} = \alpha  + \beta \\\widehat {{B_0}O{B_1}} = \pi  - \left( {\alpha  + \beta } \right)\\\widehat {{C_0}O{C_1}} = \widehat {{B_0}O{B_1}}\end{array} \right. \Rightarrow \alpha  + \beta  = \pi  - \left( {\alpha  + \beta } \right) \Rightarrow \alpha  + \beta  = \dfrac{\pi }{2}\,\,\left( {rad} \right)\)

Hai thời điểm t0 và t1 vuông pha với nhau, ta có:

\({x_{0M}}^2 + {x_{1M}}^2 = {A^2} \Rightarrow A = \sqrt {{x_{0M}}^2 + {x_{1M}}^2}  = \sqrt {{{20}^2} + {8^2}}  = \sqrt {464} \,\,\left( {mm} \right)\)

Ở thời điểm t2, vecto của điểm D quay được góc: \(\Delta \varphi  = \omega \Delta t = \pi .0,4 = 0,4\pi \,\,\left( {rad} \right)\)

Pha của điểm D ở thời điểm t2 là: \({\varphi _D} = \left( {\alpha  + \beta  + \Delta \varphi } \right) - \dfrac{\pi }{2} = \left( {\dfrac{\pi }{2} + 0,4\pi } \right) - \dfrac{\pi }{2} = 0,4\pi \,\,\left( {rad} \right)\)

Li độ của điểm D khi đó là: \({u_D} = A.cos{\varphi _D} = \sqrt {464} .cos\left( {0,4\pi } \right) = 6,66\,\,\left( {mm} \right)\)

Ta có công thức độc lập với thời gian:

\({v^2} = {\omega ^2}\left( {{A^2} - {u_D}^2} \right) = {\pi ^2}.\left[ {{{\left( {\sqrt {464} } \right)}^2} - 6,{{66}^2}} \right] \Rightarrow v = 64,36\,\,\left( {mm/s} \right)\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com