Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Một thừa đất hình chữ nhật có chiều dài bằng \(20\) mét và chiều rộng bằng \(10\) mét,

Câu hỏi số 386226:
Vận dụng

Một thừa đất hình chữ nhật có chiều dài bằng \(20\) mét và chiều rộng bằng \(10\) mét, người ta giảm chiều dài \(x\) mét (với \(0 < x < 20\) ) và tăng chiều rộng thêm \(2x\) mét để được thửa đất mới. Tìm \(x\) để thửa đất mới có diện tích lớn nhất?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:386226
Phương pháp giải

- Tính chiều dài, chiều rộng mới của thửa đất, sau đó tính diện tích mới của thửa đất.

- Sử dụng phương pháp hàm số tìm GTLN.

Giải chi tiết

Chiều dài mới của thửa đất là \(20 - x\) (mét)

Chiều rộng mới của thửa đất là \(10 + 2x\) (mét)

Khi đó diện tích mới của thửa đất là \(S = \left( {20 - x} \right)\left( {10 + 2x} \right)\).

Ta có: \(S' =  - \left( {10 + 2x} \right) + 2\left( {20 - x} \right) =  - 4x + 30\)

\(S' = 0 \Leftrightarrow x = \dfrac{{15}}{2}\).

Ta có BBT như sau:

Vậy \({S_{\max }} = S\left( {\dfrac{{15}}{2}} \right)\).

Chọn A.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com