Tính tích phân \(I = \int\limits_{ - 2}^0 {\left| {\dfrac{{{x^2} - x - 2}}{{x - 1}}} \right|dx} \) ta được kết
Tính tích phân \(I = \int\limits_{ - 2}^0 {\left| {\dfrac{{{x^2} - x - 2}}{{x - 1}}} \right|dx} \) ta được kết quả \(I = a + b\ln 2 + c\ln 3\) (với \(a,\,\,b,\,\,c\) là các số nguyên). Khi đó giá trị của biểu thức \(T = {a^3} + 3{b^2} + 2c\) là:
Đáp án đúng là: C
Quảng cáo
- Xét dấu biểu thức \(\dfrac{{{x^2} - x - 2}}{{x - 1}}\) sau đó chia các khoảng để phá trị tuyệt đối.
- Sử dụng phương pháp tính tích phân hàm hữu tỉ khi bậc tử > bậc mẫu (chia tử cho mẫu).
- Sử dụng các nguyên hàm cơ bản để tính tích phân.
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













