Cho hàm số \(f\left( x \right) = {x^7} + {x^5} - {x^4} + {x^3} - 2{x^2} + 2x - 10\) và \(g\left( x \right) = {x^3}
Cho hàm số \(f\left( x \right) = {x^7} + {x^5} - {x^4} + {x^3} - 2{x^2} + 2x - 10\) và \(g\left( x \right) = {x^3} - 3x + 2\). Đặt \(F\left( x \right) = g\left[ {f\left( x \right)} \right]\). Tìm tất cả các giá trị của tham số \(m\) để phương trình \(F\left( x \right) = m\) có ba nghiệm thực phân biệt.
Đáp án đúng là: B
Quảng cáo
- Chứng minh hàm số \(f\left( x \right)\) luôn đồng biến trên \(\mathbb{R}\), đặt \(t = f\left( x \right)\) suy ra với mỗi giá trị của \(t\) cho 1 nghiệm \(x\) tương ứng.
- Đưa bài toán về ẩn \(t\), lập BBT và kết luận.
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com














