Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong mặt phẳng \(Oxy\), cho elip \(\left( E \right):\frac{{{x^2}}}{4} + {y^2} = 1.\) Xét các điểm \(A\left(

Câu hỏi số 394815:
Vận dụng

Trong mặt phẳng \(Oxy\), cho elip \(\left( E \right):\frac{{{x^2}}}{4} + {y^2} = 1.\) Xét các điểm \(A\left( {a;b} \right)\) và \(B\) thuộc elip sao cho tam giác \(OAB\) cân cân tại \(O\)  và có diện tích đạt giá trị lớn nhất. Tính tích \(ab\) biết \(a;b\) là hai số dương và điểm \(B\) có hoành độ dương.

Đáp án đúng là: C

Quảng cáo

Câu hỏi:394815
Phương pháp giải

Sử dụng bất đẳng thức Cauchy.

Giải chi tiết

Vì \(a,b > 0\) nên điểm \(A\) nằm ở góc phần tư thứ nhất.

Tam giác OAB cân và điểm B có hoành độ dương nên điểm B đối xứng với điểm A qua trục hoành, hay \(B\left( {a; - b} \right).\)

Diện tích tam giác OAB là: \(\frac{1}{2}.a.2b = ab.\)

Vì A thuộc elip nên: \(\frac{{{a^2}}}{4} + {b^2} = 1.\)

Theo Cauchy ta có: \(\frac{{{a^2}}}{4} + {b^2} \ge 2\sqrt {\frac{{{a^2}}}{4}.{b^2}}  = ab \Rightarrow ab \le 1.\)

Vậy diện tích tam giác OAB lớn nhất là \(1\)  khi \(a = \sqrt 2 ,b = \frac{{\sqrt 2 }}{2}.\)

Vậy khi đó \(ab = 1.\)

Đáp án cần chọn là: C

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com