Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số \(f\left( x \right) = {\left( {{x^2} - 3} \right)^2},\forall x \in \mathbb{R}\). Giá trị cực đại của hàm số \(f'\left( x \right)\) bằng:

Câu 396907: Cho hàm số \(f\left( x \right) = {\left( {{x^2} - 3} \right)^2},\forall x \in \mathbb{R}\). Giá trị cực đại của hàm số \(f'\left( x \right)\) bằng:

A. \(\dfrac{1}{2}\)

B. \(8\)

C. \(9\)

D. \( - 8\)

Câu hỏi : 396907

Phương pháp giải:

- Xác định điểm cực đại của hàm số bằng cách giải hệ phương trình \(\left\{ \begin{array}{l}y' = 0\\y'' < 0\end{array} \right.\).


- Tính giá trị cực đại \({y_{CD}}\).

  • Đáp án : B
    (0) bình luận (0) lời giải

    Giải chi tiết:

    Ta có: \(f'\left( x \right) = 2.2x\left( {{x^2} - 3} \right) = 4{x^3} - 12x\) \( \Rightarrow f''\left( x \right) = 12{x^2} - 12,\,\,f'''\left( x \right) = 24x\)

    Xét hệ phương trình \(\left\{ \begin{array}{l}f''\left( x \right) = 0\\f'''\left( x \right) < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}12{x^2} - 12 = 0\\24x < 0\end{array} \right. \Leftrightarrow x =  - 1\)

    Do đó điểm cực đại của hàm số là \(x =  - 1\).

    Vậy giá trị cực đại của hàm số là \(y{'_{CD}} = y'\left( { - 1} \right) = 8\).

    Chọn B.

    Chú ý:

    Phân biệt điểm cực đại và giá trị cực đại của hàm số.

    Lời giải sai Bình thường Khá hay Rất Hay
Xem bình luận

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com