Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm \(b,\,\,c\) để phương trình \({x^2} + bx + c = 0\) có hai nghiệm là \({x_1} =  - 2;\,\,{x_2} =

Câu hỏi số 401049:
Vận dụng

Tìm \(b,\,\,c\) để phương trình \({x^2} + bx + c = 0\) có hai nghiệm là \({x_1} =  - 2;\,\,{x_2} = 3.\)

Đáp án đúng là: D

Quảng cáo

Câu hỏi:401049
Phương pháp giải

Thay 2 nghiệm đã cho vào phương trình, giải hệ phương trình gồm hai ẩn \(b,\,\,c.\)

Giải hệ phương trình bằng phương pháp cộng đại số để tìm ra \(b,c\).

Giải chi tiết

Phương trình \({x^2} + bx + c = 0\) có hai nghiệm là \({x_1} =  - 2;{x_2} = 3\) nên thay hai giá trị đó vào phương trình sẽ thỏa mãn:

\( \Leftrightarrow \left\{ \begin{array}{l}{\left( { - 2} \right)^2} - 2b + c = 0\\{3^2} + 3b + c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2b - c = 4\\3b + c =  - 9\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}2b - c + 3b + c = 4 + \left( { - 9} \right)\\2b - c = 4\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}5b =  - 5\\c = 2b - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b =  - 1\\c =  - 6\end{array} \right.\)

Vậy \(b =  - 1;c =  - 6\) thì thỏa mãn bài toán.

Đáp án cần chọn là: D

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com