Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Lập được bao nhiêu số tự nhiên có \(3\) chữ số khác nhau chọn từ tập \(A = \left\{ {1;2;3;4;5}

Câu hỏi số 402855:
Vận dụng

Lập được bao nhiêu số tự nhiên có \(3\) chữ số khác nhau chọn từ tập \(A = \left\{ {1;2;3;4;5} \right\}\) sao cho mỗi số lập được luôn có mặt chữ số \(3\).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:402855
Phương pháp giải

- Gọi số tạo thành có dạng \(x = \overline {abc} \), với \(a\), \(b\), \(c\) đôi một khác nhau và lấy từ \(A\).

- Chọn vị trí cho chữ số 3.

- Chọn 2 chữ số còn lại. Áp dụng quy tắc nhân.

Giải chi tiết

Gọi số tạo thành có dạng \(x = \overline {abc} \), với \(a\), \(b\), \(c\) đôi một khác nhau và lấy từ \(A\).

Chọn một vị trí \(a,\,\,b\) hoặc \(c\) cho số \(3\) có \(3\) cách chọn.

Chọn hai chữ số khác \(3\) từ \(A\) và sắp xếp vào hai vị trí còn lại của \(x\) có \(A_4^2\) cách chọn

Theo quy tắc nhân có \(3.A_4^2 = 36\) cách chọn

Mỗi cách sắp xếp như trên cho ta một số thỏa yêu cầu.

Vậy có \(36\) số cần tìm.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com