Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) có bảng biến thiên như hình
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) có bảng biến thiên như hình vẽ:

Số nghiệm của phương trình \(\left| {f\left( {f\left( x \right)} \right)} \right| = 2\) là:
Đáp án đúng là: C
Quảng cáo
- Phá trị tuyệt đối \(\left| {f\left( {f\left( x \right)} \right)} \right| = 2 \Leftrightarrow \left[ \begin{array}{l}f\left( {f\left( x \right)} \right) = 2\\f\left( {f\left( x \right)} \right) = - 2\end{array} \right.\).
- Dựa vào BBT tìm số nghiệm của mỗi phương trình nhờ vào số giao điểm của đồ thị hàm số.
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












