Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) có bảng biến thiên như hình

Câu hỏi số 403127:
Vận dụng cao

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) có bảng biến thiên như hình vẽ:

Số nghiệm của phương trình \(\left| {f\left( {f\left( x \right)} \right)} \right| = 2\) là:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:403127
Phương pháp giải

- Phá trị tuyệt đối \(\left| {f\left( {f\left( x \right)} \right)} \right| = 2 \Leftrightarrow \left[ \begin{array}{l}f\left( {f\left( x \right)} \right) = 2\\f\left( {f\left( x \right)} \right) =  - 2\end{array} \right.\).

- Dựa vào BBT tìm số nghiệm của mỗi phương trình nhờ vào số giao điểm của đồ thị hàm số.

Giải chi tiết

Ta có: \(\left| {f\left( {f\left( x \right)} \right)} \right| = 2 \Leftrightarrow \left[ \begin{array}{l}f\left( {f\left( x \right)} \right) = 2\,\,\,\,\,\,\left( 1 \right)\\f\left( {f\left( x \right)} \right) =  - 2\,\,\,\left( 2 \right)\end{array} \right.\)

\(\left( 1 \right) \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) = a <  - 4\,\,\,\left( {1.1} \right)\\f\left( x \right) = b > 3\,\,\,\,\,\,\,\left( {1.2} \right)\end{array} \right.\), \(\left( 2 \right) \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) =  - 4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {2.1} \right)\\f\left( x \right) = c \in \left( {1;3} \right)\,\,\,\left( {2.2} \right)\\f\left( x \right) = d > 3\,\,\,\,\,\,\,\,\,\,\left( {2.3} \right)\end{array} \right.\)

Tiếp tục dựa vào BBT ta có:

- Phương trình (1.1) có 0 nghiệm.

- Phương trình (1.2) có 2 nghiệm phân biệt.

- Phương trình (2.1) có 1 nghiệm.

- Phương trình (2.2) có 2 nghiệm phân biệt.

- Phương trình (2.3) có 2 nghiệm phân biệt.

Rõ ràng 7 nghiệm trên là phân biệt.

Vậy phương trình \(\left| {f\left( {f\left( x \right)} \right)} \right| = 2\) có 7 nghiệm phân biệt.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com