Trong không gian với hệ tọa độ Oxy, tìm trên trục Oz điểm M cách đều điểm A(2;3;4) và mặt
Trong không gian với hệ tọa độ Oxy, tìm trên trục Oz điểm M cách đều điểm A(2;3;4) và
mặt phẳng \(\left( P \right):\,\,2x + 3y + z - 17 = 0\).
Đáp án đúng là: B
Quảng cáo
- Gọi \(M\left( {0;0;m} \right) \in Oz\).
- Điểm M cách đều điểm A và mặt phẳng \(\left( P \right)\)\( \Leftrightarrow MA = d\left( {M;\left( P \right)} \right)\).
- Sử dụng các công thức \(MA = \sqrt {{{\left( {{x_A} - {x_M}} \right)}^2} + {{\left( {{y_A} - {y_M}} \right)}^2} + {{\left( {{z_A} - {z_M}} \right)}^2}} \)
- Khoảng cách từ \(M\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( P \right):\,\,Ax + By + Cz + D = 0\) là
\(d\left( {M;\left( P \right)} \right) = \dfrac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












