Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

\(\int\limits_1^2 {\left( {2x + 1 + \dfrac{1}{x}} \right)dx} \) bằng

Câu hỏi số 403794:
Nhận biết

\(\int\limits_1^2 {\left( {2x + 1 + \dfrac{1}{x}} \right)dx} \) bằng

Đáp án đúng là: C

Quảng cáo

Câu hỏi:403794
Phương pháp giải

Áp dụng các công thức tính nguyên hàm cơ bản: \(\int {{x^n}dx}  = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C\)\(\left( {n \ne  - 1} \right)\), \(\int {\dfrac{1}{x}dx}  = \ln \left| x \right| + C\).

Giải chi tiết

\(\begin{array}{l}\int\limits_1^2 {\left( {2x + 1 + \dfrac{1}{x}} \right)} dx = \left. {\left( {{x^2} + x + \ln \left| x \right|} \right)} \right|_1^2\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 4 + 2 + \ln 2 - \left( {1 + 1 + \ln 1} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 4 + \ln 2\end{array}\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com