Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Họ nguyên hàm của hàm số \(f\left( x \right) = 2\sin x.\cos 2x\) là

Câu hỏi số 403824:
Thông hiểu

Họ nguyên hàm của hàm số \(f\left( x \right) = 2\sin x.\cos 2x\) là

Đáp án đúng là: A

Quảng cáo

Câu hỏi:403824
Phương pháp giải

- Áp dụng công thức biến đổi tích thành tổng: \(\sin a\cos b = \dfrac{1}{2}\left[ {\sin \left( {a + b} \right) + \sin \left( {a - b} \right)} \right]\).

- Áp dụng các công thức tính nguyên hàm: \(\int {\sin \left( {ax + b} \right)dx}  =  - \dfrac{1}{a}\cos \left( {ax + b} \right) + C\).

Giải chi tiết

Ta có \(f\left( x \right) = 2\sin x\cos 2x = \sin 3x + \sin \left( { - x} \right) = \sin 3x - \sin x\).

Khi đó ta có \(\int {f\left( x \right)dx}  = \int {\left( {\sin 3x - \sin x} \right)dx}  =  - \dfrac{1}{3}\cos 3x + \cos x + C\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com