Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tứ diện MNPQ có MQ vuông góc với mặt phẳng \(\left( {MNP} \right)\),\(MP = MQ = 3,\) \(MN = 4,\) \(NP

Câu hỏi số 404449:
Vận dụng

Cho tứ diện MNPQMQ vuông góc với mặt phẳng \(\left( {MNP} \right)\),\(MP = MQ = 3,\) \(MN = 4,\) \(NP = 5\). Khoảng cách từ M đến mặt phẳng \(\left( {NPQ} \right)\) bằng

Đáp án đúng là: D

Quảng cáo

Câu hỏi:404449
Phương pháp giải

- Chứng minh tam giác MNP vuông và tính độ dài đường cao kẻ từ M xuống NP.

- Áp dụng hệ thức lượng trong tam giác vuông để tìm khoảng cách từ M đến \(\left( {NPQ} \right)\).

Giải chi tiết

Ta có \(MP = 3;MN = 4;NP = 5 \Rightarrow N{P^2} = M{N^2} + M{P^2}\) nên tam giác MNP vuông tại M.

Kẻ \(MH \bot NP \Rightarrow \dfrac{1}{{M{H^2}}} = \dfrac{1}{{M{P^2}}} + \dfrac{1}{{M{N^2}}} \Rightarrow MH = \dfrac{{12}}{5}\)

Mà \(MQ \bot \left( {MNP} \right) \Rightarrow MQ \bot NP;MH \bot NP \Rightarrow \) từ M kẻ \(MK \bot QH \Rightarrow {d_{\left( {M;\left( {NQP} \right)} \right)}} = MK\)

Ta có \(\dfrac{1}{{M{K^2}}} = \dfrac{1}{{M{Q^2}}} + \dfrac{1}{{M{H^2}}} \Rightarrow MK = \dfrac{{12\sqrt {41} }}{{41}}\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com