Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tứ diện ABCD có tam giác BCD đều cạnh a, AB vuông góc với mặt phẳng (BCD), AB = 2a. M là trung

Câu hỏi số 404548:
Thông hiểu

Cho tứ diện ABCD có tam giác BCD đều cạnh a, AB vuông góc với mặt phẳng (BCD), AB = 2a. M là trung điểm của đoạn AD, gọi \(\varphi \) là góc giữa CM và mặt phẳng BCD. Khi đó:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:404548
Phương pháp giải

- Gọi N là trung điểm của BD. Chứng minh \(MN \bot \left( {BCD} \right)\).

- Góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của đường thẳng trên mặt phẳng đó.

- Sử dụng tỉ số lượng giác của góc nhọn trong tam giác vuông để tính góc.

Giải chi tiết

Gọi N là trung điểm của BD, ta có MN là đường trung bình của tam giác ABD nên MN // AB và \(MN = \dfrac{1}{2}AB = a.\)

Mà \(AB \bot \left( {BCD} \right)\,\,\left( {gt} \right)\) nên \(MN \bot \left( {BCD} \right)\), do đó CN là hình chiếu của CM lên (BCD)

\( \Rightarrow \angle \left( {CM;\left( {BCD} \right)} \right) = \angle \left( {CM;CN} \right) = \angle MCN = \varphi \).

Vì tam giác BCD đều cạnh a nên \(CN = \dfrac{{a\sqrt 3 }}{2}\).

Ta có: \(MN \bot \left( {BCD} \right) \Rightarrow MN \bot CN\) \( \Rightarrow \Delta CMN\) vuông tại N.

Vậy \(\tan \varphi  = \tan \angle MCN = \dfrac{{MN}}{{CN}} = a:\dfrac{{a\sqrt 3 }}{2} = \dfrac{{2\sqrt 3 }}{3}\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com