Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho tứ diện ABCD có tam giác BCD đều cạnh a, AB vuông góc với mặt phẳng (BCD), AB = 2a. M là trung

Câu hỏi số 404548:
Thông hiểu

Cho tứ diện ABCD có tam giác BCD đều cạnh a, AB vuông góc với mặt phẳng (BCD), AB = 2a. M là trung điểm của đoạn AD, gọi \(\varphi \) là góc giữa CM và mặt phẳng BCD. Khi đó:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:404548
Phương pháp giải

- Gọi N là trung điểm của BD. Chứng minh \(MN \bot \left( {BCD} \right)\).

- Góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của đường thẳng trên mặt phẳng đó.

- Sử dụng tỉ số lượng giác của góc nhọn trong tam giác vuông để tính góc.

Giải chi tiết

Gọi N là trung điểm của BD, ta có MN là đường trung bình của tam giác ABD nên MN // AB và \(MN = \dfrac{1}{2}AB = a.\)

Mà \(AB \bot \left( {BCD} \right)\,\,\left( {gt} \right)\) nên \(MN \bot \left( {BCD} \right)\), do đó CN là hình chiếu của CM lên (BCD)

\( \Rightarrow \angle \left( {CM;\left( {BCD} \right)} \right) = \angle \left( {CM;CN} \right) = \angle MCN = \varphi \).

Vì tam giác BCD đều cạnh a nên \(CN = \dfrac{{a\sqrt 3 }}{2}\).

Ta có: \(MN \bot \left( {BCD} \right) \Rightarrow MN \bot CN\) \( \Rightarrow \Delta CMN\) vuông tại N.

Vậy \(\tan \varphi  = \tan \angle MCN = \dfrac{{MN}}{{CN}} = a:\dfrac{{a\sqrt 3 }}{2} = \dfrac{{2\sqrt 3 }}{3}\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com