Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Trong không gian Oxyz, cho điểm \(I\left( {1;0; - 1} \right)\) là tâm của mặt cầu \(\left( S \right)\) và

Câu hỏi số 406582:
Thông hiểu

Trong không gian Oxyz, cho điểm \(I\left( {1;0; - 1} \right)\) là tâm của mặt cầu \(\left( S \right)\) và đường thẳng \(d:\,\,\dfrac{{x - 1}}{2} = \dfrac{{y + 1}}{2} = \dfrac{z}{{ - 1}}\) cắt mặt cầu \(\left( S \right)\) tại hai điểm A, B sao cho \(AB = 6\). Mặt cầu \(\left( S \right)\) có bán kính R bằng:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:406582
Phương pháp giải

Tính khoảng cách từ tâm I đến AB

Giải chi tiết

Gọi H là hình chiếu của I lên d

\(\begin{array}{l}d:\dfrac{{x - 1}}{2} = \dfrac{{y + 1}}{2} = \dfrac{z}{{ - 1}} = t\\ \Rightarrow H\left( {2t + 1;2t - 1; - t} \right)\\HI = \sqrt {{{\left( {2t} \right)}^2} + {{\left( {2t - 1} \right)}^2} + {{\left( { - t + 1} \right)}^2}}  = \sqrt {9{t^2} - 6t + 2} \\H{I_{\min }} = 1 \Leftrightarrow t = \dfrac{1}{3}\\ \Rightarrow R = \sqrt {H{I^2} + {{\left( {\dfrac{{AB}}{2}} \right)}^2}}  = \sqrt {{1^2} + {3^2}}  = \sqrt {10} \end{array}\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com