Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = x{\left( {x - 1} \right)^2}\left( {x +

Câu hỏi số 406703:
Thông hiểu

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = x{\left( {x - 1} \right)^2}\left( {x + 3} \right)\). Số điểm cực trị của hàm số \(y = f\left( x \right)\) là

Đáp án đúng là: D

Quảng cáo

Câu hỏi:406703
Phương pháp giải

Số điểm cực trị của đồ thị hàm số \(y = f\left( x \right)\)  là số nghiệm bội lẻ của phương trình \(f'\left( x \right) = 0.\)

Giải chi tiết

Ta có: \(f'\left( x \right) = 0\) \( \Leftrightarrow x{\left( {x - 1} \right)^2}\left( {x + 3} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x =  - 3\end{array} \right.\)

Trong đó nghiệm \(x = 1\) là nghiệm bội hai nên hàm số đã cho có hai điểm cực trị là \(x = 0\) và \(x =  - 3.\)  

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com