Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho tam giác ABC cân tại A. Trên các cạnh AB, AC lấy các điểm M, N sao cho BM = CN a) Tứ giác BMNC là

Câu hỏi số 406995:
Vận dụng

Cho tam giác ABC cân tại A. Trên các cạnh AB, AC lấy các điểm M, N sao cho BM = CN

a) Tứ giác BMNC là hình gì ? vì sao ?

b) Tính các góc của tứ giác BMNC biết rằng  \(\angle {\rm{A}} = 40^\circ \)

Quảng cáo

Câu hỏi:406995
Phương pháp giải

Áp dụng định nghĩa của hình thang: hình thang là tứ giác có 2 cạnh đối song song

Áp dụng định nghĩa của hình thang cân: hình thang cân là hình thang có 2 góc kề một đáy bằng nhau

Giải chi tiết

a) Tứ giác BMNC là hình gì ? Vì sao ?

Theo đề bài ta có: \(\Delta ABC\) cân tại \(A\) \( \Rightarrow AB = AC\) và \(\angle B = \angle C = \frac{{{{180}^0} - \angle A}}{2}.\)

Ta có: \(\left\{ \begin{array}{l}AB = AM + BM\\AC = AN + NC\end{array} \right.\)

Mà \(BM = NC\,\,\left( {gt} \right) \Rightarrow AM = AN\) (tính chất bắc cầu).

\( \Rightarrow \Delta AMN\) cân tại \(A\) \( \Rightarrow \angle AMN = \angle ANM = \frac{{{{180}^0} - \angle A}}{2}.\)

\( \Rightarrow \angle AMN = \angle B = \frac{{{{180}^0} - \angle A}}{2}\)

Mà hai góc này là hai góc đồng vị

\( \Rightarrow MN//BC \Rightarrow BMNC\) là hình thang. (định nghĩa)

Lại có: \(\angle B = \angle C\,\,\,\left( {cmt} \right)\)

\( \Rightarrow BMNC\) là hình thang cân. (dhnb)

b) Tính các góc của tứ giác BMNC biết rằng  \(\angle {\rm{A}} = 40^\circ \)

Ta có: \(\angle B = \angle C = \frac{{{{180}^0} - \angle A}}{2} = \frac{{{{180}^0} - {{40}^0}}}{2} = {70^0}.\)

Lại có: \(\angle BMN + \angle MNC + \angle B + \angle C = {360^0}\) (tổng các góc trong hình thang)

\( \Rightarrow \angle BMN + \angle MNC = {360^0} - 2\angle B = {360^0} - {70^0}.2 = {220^0}\)

\( \Rightarrow \angle BMN = \angle MNC = \frac{{{{220}^0}}}{2} = {110^0}.\) (do \(BMNC\) là hình thang cân).

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com