Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tính giá trị của biểu thức \(A = \frac{{2\sqrt x }}{{\sqrt 5  + \sqrt 3 }}\) với \(x = 4 + \sqrt {15}

Câu hỏi số 408343:
Vận dụng

Tính giá trị của biểu thức \(A = \frac{{2\sqrt x }}{{\sqrt 5  + \sqrt 3 }}\) với \(x = 4 + \sqrt {15} \)

Đáp án đúng là: D

Quảng cáo

Câu hỏi:408343
Phương pháp giải

- Tìm điều kiện của \(x\) để biểu thức xác định.

- Đối chiếu với điều kiện xem \(x = 4 + \sqrt {15} \) thỏa mãn điều kiện xác định.

- Biến đổi \(2x\)thành hằng đẳng thức.

- Tính \(\sqrt x \)

- Thay giá trị của \(\sqrt x \) vừa tính được vào \(A.\)

Giải chi tiết

Điều kiện: \(x \ge 0.\)

Ta có: \(x = 4 + \sqrt {15} \) thỏa mãn điều kiện xác định.

\(\begin{array}{l} \Rightarrow 2x = 8 + 2\sqrt {15}  = 5 + 2\sqrt 5 .\sqrt 3  + 3 = {\left( {\sqrt 5  + \sqrt 3 } \right)^2}\\ \Rightarrow x = \frac{{{{\left( {\sqrt 5  + \sqrt 3 } \right)}^2}}}{2}\\ \Rightarrow \sqrt x  = \sqrt {\frac{{{{\left( {\sqrt 5  + \sqrt 3 } \right)}^2}}}{2}}  = \frac{{\left| {\sqrt 5  + \sqrt 3 } \right|}}{{\sqrt 2 }} = \frac{{\sqrt 5  + \sqrt 3 }}{{\sqrt 2 }}\end{array}\)

Thay \(\sqrt x  = \frac{{\sqrt 5  + \sqrt 3 }}{{\sqrt 2 }}\) vào \(A\) ta được: \(A = \frac{{2\left( {\sqrt 5  + \sqrt 3 } \right)}}{{\sqrt 2 \left( {\sqrt 5  + \sqrt 3 } \right)}} = \sqrt 2 \)

Đáp án cần chọn là: D

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com