Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác \(ABC\) vuông tại \(A\); \(BC = a\) không đổi, \(\angle C = \alpha \,\,\,\left( {{0^0} <

Cho tam giác \(ABC\) vuông tại \(A\); \(BC = a\) không đổi, \(\angle C = \alpha \,\,\,\left( {{0^0} < \alpha  < {{90}^0}} \right)\)

Trả lời cho các câu 1, 2 dưới đây:

Câu hỏi số 1:
Vận dụng

Lập công thức để tính diện tích tam giác ABC theo \(a\) và .

Đáp án đúng là: A

Câu hỏi:408962
Phương pháp giải

Áp dụng hệ thức về cạnh và góc trong tam giác vuông.

Sử dụng công thức tính diện tích tam giác \({S_{ABC}} = \frac{1}{2}AB.AC.\)

Giải chi tiết

Xét \(\Delta ABC\) vuông tại \(A\) ta có: \(\left\{ \begin{array}{l}AB = BC.\sin \alpha  = a.\sin \alpha \\AC = BC.cos\alpha  = a.cos\alpha \end{array} \right.\)

\({S_{ABC}} = \frac{1}{2}.AB.AC = \frac{1}{2}a.\sin \alpha .a.cos\alpha  = \frac{1}{2}{a^2}.\sin \alpha .cos\alpha \)

Đáp án cần chọn là: A

Câu hỏi số 2:
Vận dụng

Tìm góc  để diện tích tam giác ABC là lớn nhất. Tính giá trị lớn nhất ấy và vẽ hình minh họa.

Đáp án đúng là: D

Câu hỏi:408963
Phương pháp giải

Sử dụng định lý Pitago.

Áp dụng bất đẳng thức Cô-si

Giải chi tiết

\({S_{ABC}} = \frac{1}{2}.AB.AC \le \frac{1}{2}.\frac{{\left( {A{B^2} + A{C^2}} \right)}}{2} = \frac{1}{4}.\left( {A{B^2} + A{C^2}} \right)\)

Áp dụng định lý Pitago cho \(\Delta ABC\) vuông tại \(A\) ta có: \(A{B^2} + A{C^2} = B{C^2}\)

\( \Rightarrow {S_{ABC}} = \frac{1}{2}.AB.AC \le \frac{1}{4}.\left( {A{B^2} + A{C^2}} \right) = \frac{1}{4}B{C^2} = \frac{1}{4}{a^2}\)

Dấu “=” xảy ra \( \Leftrightarrow AC = AB\)\( \Leftrightarrow \Delta ABC\) vuông cân  \( \Rightarrow \angle B = \angle C = {45^0}\) hay \(\alpha  = {45^0}\).

Vậy \({S_{ABCmax}} = \frac{1}{4}{a^2}\) khi \(\alpha  = {45^0}.\)

Đáp án cần chọn là: D

Quảng cáo

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com