Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Kí hiệu \(m,\,\,M\) là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y = \dfrac{{{x^2} +

Câu hỏi số 410461:
Thông hiểu

Kí hiệu \(m,\,\,M\) là giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y = \dfrac{{{x^2} + 3}}{{x + 1}}\) trên đoạn \(\left[ {0;2} \right]\). Giá trị của \(m + M\) bằng:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:410461
Phương pháp giải

- Tính đạo hàm của hàm số, sử dụng công thức \(\left( {\dfrac{u}{v}} \right)' = \dfrac{{u'v - uv'}}{{{v^2}}}\).

- Giải phương trình

\(y' = 0\), xác định các nghiệm \({x_i} \in \left[ {0;2} \right]\).

- Tính các giá trị \(y\left( 0 \right),\,\,y\left( 2 \right),\,\,y\left( {{x_i}} \right)\).

- Kết luận: \(\mathop {\min }\limits_{\left[ {0;2} \right]} y = \min \left\{ {y\left( 0 \right),\,\,y\left( 2 \right),\,\,y\left( {{x_i}} \right)} \right\}\), \(\mathop {\max }\limits_{\left[ {0;2} \right]} y = \max \left\{ {y\left( 0 \right),\,\,y\left( 2 \right),\,\,y\left( {{x_i}} \right)} \right\}\).

Giải chi tiết

ĐKXĐ: \(x + 1 \ne 0 \Leftrightarrow x \ne  - 1\), do đó hàm số xác định trên \(\left[ {0;2} \right]\).

\(\begin{array}{l}y' = \dfrac{{2x\left( {x + 1} \right) - \left( {{x^2} + 3} \right)}}{{{{\left( {x + 1} \right)}^2}}}\\y' = \dfrac{{{x^2} + 2x - 3}}{{{{\left( {x + 1} \right)}^2}}}\\y' = 0 \Leftrightarrow {x^2} + 2x - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1 \in \left[ {0;2} \right]\\x =  - 3 \notin \left[ {0;2} \right]\end{array} \right.\end{array}\)

Ta có: \(y\left( 0 \right) = 3,\,\,y\left( 2 \right) = \dfrac{7}{3},\,\,y\left( 1 \right) = 2\).

\(\begin{array}{l} \Rightarrow m = \mathop {min}\limits_{\left[ {0;2} \right]} y = y\left( 1 \right) = 2\\\,\,\,\,\,M = \mathop {max}\limits_{\left[ {0;2} \right]} y = y\left( 0 \right) = 3\end{array}\)

Vậy \(m + M = 2 + 3 = 5\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com