Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị \(f'\left( x \right)\)

Câu hỏi số 411332:
Vận dụng cao

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị \(f'\left( x \right)\) như hình vẽ bên. Số điểm cực đại của hàm số \(g\left( x \right) = f\left( { - {x^2} + x} \right)\) là:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:411332
Phương pháp giải

- Tính \(g'\left( x \right)\).

- Giải phương trình \(g'\left( x \right) = 0\).

- Lập BBT và suy ra số điểm cực đại của hàm số.

Giải chi tiết

Ta có:

\(\begin{array}{l}g\left( x \right) = f\left( { - {x^2} + x} \right)\\ \Rightarrow g'\left( x \right) = \left( { - 2x + 1} \right)f'\left( { - {x^2} + x} \right)\\g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{1}{2}\\f'\left( { - {x^2} + x} \right) = 0\end{array} \right.\end{array}\)

Dựa vào đồ thị hàm số \(y = f'\left( x \right)\) ta có \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\).

\( \Rightarrow f'\left( { - {x^2} + x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} - {x^2} + x = 0\\ - {x^2} + x = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\).

Suy ra phương trình \(g'\left( x \right) = 0\) có 3 nghiệm đơn phân biệt \(x = \dfrac{1}{2},\,\,x = 0,\,\,x = 1\).

Chọn \(x = 2\) ta có \(g'\left( 2 \right) =  - 3f'\left( { - 2} \right) < 0\), qua các nghiệm \(x = \dfrac{1}{2},\,\,x = 0,\,\,x = 1\) thì \(g'\left( x \right)\) đổi dấu.

BBT:

Dựa vào BBT ta thấy hàm số \(y = g\left( x \right)\) có 2 điểm cực đại \(x = 0,\,\,x = 1\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com