Nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right) = {{\rm{e}}^{2x}}\) vàthỏa mãn \(F\left( 0
Nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right) = {{\rm{e}}^{2x}}\) vàthỏa mãn \(F\left( 0 \right) = 1\) là
Đáp án đúng là: B
Quảng cáo
- Sử dụng công thức tính nguyên hàm: \(\int {{e^{ax + b}}dx} = \dfrac{{{e^{ax + b}}}}{a} + C\).
- Thay \(F\left( 0 \right) = 1\) để tìm hằng số \(C\).
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












