Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian \(Oxyz\), cho đường thẳng  \(d:\dfrac{x}{{ - 2}} = \dfrac{{y - 1}}{1} = \dfrac{z}{1}\) và

Câu hỏi số 412227:
Vận dụng

Trong không gian \(Oxyz\), cho đường thẳng  \(d:\dfrac{x}{{ - 2}} = \dfrac{{y - 1}}{1} = \dfrac{z}{1}\) và mặt phẳng \(\left( P \right):2x - y + 2z - 2 = 0.\) Có bao nhiêu điểm \(M\) thuộc d  sao cho M cách đều gốc tọa độ O và mặt phẳng \(\left( P \right)\)?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:412227
Phương pháp giải

- Tham số hóa tọa độ điểm \(M \in d\) theo tham số \(t\).

- Tính độ dài \(OM = \sqrt {{{\left( {{x_M} - {x_O}} \right)}^2} + {{\left( {{y_M} - {y_O}} \right)}^2} + {{\left( {{z_M} - {z_O}} \right)}^2}} \).

- Tính khoảng cách từ \(M\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(Ax + By + Cz + D = 0\) là: \(d\left( {M;\left( P \right)} \right) = \dfrac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).

- Cho \(OM = d\left( {M;\left( P \right)} \right)\), giải phương trình tìm \(t\).

Giải chi tiết

Vì \(M \in d:\,\,\dfrac{x}{{ - 2}} = \dfrac{{y - 1}}{1} = \dfrac{z}{1} \Rightarrow \) Gọi \(M\left( { - 2t;\,\,1 + t;\,\,t} \right)\).

Ta có: \(OM = \sqrt {{{\left( { - 2t} \right)}^2} + {{\left( {1 + t} \right)}^2} + {t^2}}  = \sqrt {6{t^2} + 2t + 1} \).

            \(d\left( {M;\left( P \right)} \right) = \dfrac{{\left| {2\left( { - 2t} \right) - \left( {1 + t} \right) + 2t - 2} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} }} = \dfrac{{\left| { - 3t - 3} \right|}}{3} = \left| {t + 1} \right|\).

Theo bài ra ta có: M cách đều gốc tọa độ O và mặt phẳng \(\left( P \right)\)\( \Leftrightarrow \sqrt {6{t^2} + 2t + 1}  = \left| {t + 1} \right|\).

\(\begin{array}{l} \Leftrightarrow 6{t^2} + 2t + 1 = {t^2} + 2t + 1\\ \Leftrightarrow 5{t^2} = 0 \Leftrightarrow t = 0\end{array}\)

\( \Rightarrow M\left( {0;1;0} \right)\)

Vậy có 1 điểm \(M\)  thỏa mãn yêu cầu bài toán là \(M\left( {0;1;0} \right)\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com