Trong không gian \(Oxyz\), cho đường thẳng \(d:\dfrac{x}{{ - 2}} = \dfrac{{y - 1}}{1} = \dfrac{z}{1}\) và
Trong không gian \(Oxyz\), cho đường thẳng \(d:\dfrac{x}{{ - 2}} = \dfrac{{y - 1}}{1} = \dfrac{z}{1}\) và mặt phẳng \(\left( P \right):2x - y + 2z - 2 = 0.\) Có bao nhiêu điểm \(M\) thuộc d sao cho M cách đều gốc tọa độ O và mặt phẳng \(\left( P \right)\)?
Đáp án đúng là: D
Quảng cáo
- Tham số hóa tọa độ điểm \(M \in d\) theo tham số \(t\).
- Tính độ dài \(OM = \sqrt {{{\left( {{x_M} - {x_O}} \right)}^2} + {{\left( {{y_M} - {y_O}} \right)}^2} + {{\left( {{z_M} - {z_O}} \right)}^2}} \).
- Tính khoảng cách từ \(M\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(Ax + By + Cz + D = 0\) là: \(d\left( {M;\left( P \right)} \right) = \dfrac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).
- Cho \(OM = d\left( {M;\left( P \right)} \right)\), giải phương trình tìm \(t\).
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












