Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho khối lăng trụ đều \(ABC.A'B'C'\) có \(AB = 2a,\,\,M\) là trung điểm của \(BC\) và \(A'M = 3a.\)

Câu hỏi số 413694:
Thông hiểu

Cho khối lăng trụ đều \(ABC.A'B'C'\) có \(AB = 2a,\,\,M\) là trung điểm của \(BC\) và \(A'M = 3a.\) Thể tích khối lăng trụ đã cho bằng:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:413694
Phương pháp giải

Thể tích khối lăng trụ có chiều cao \(h\) và diện tích đáy \(S\) là \(V = Sh.\)

Đường trung tuyến của tam giác đều cạnh \(a\) có độ dài là: \(\dfrac{{a\sqrt 3 }}{2}.\)

Diện tích tam giác đều cạnh \(a\) là: \(S = \dfrac{{{a^2}\sqrt 3 }}{4}.\)

Giải chi tiết

Ta có: \({S_{ABC}} = \dfrac{{{{\left( {2a} \right)}^2}.\sqrt 3 }}{4} = {a^2}\sqrt 3 .\)

Ta có: \(AM\) là đường trung tuyến của \(\Delta ABC\) đều cạnh \(2a\)  \( \Rightarrow AM = \dfrac{{2a\sqrt 3 }}{2} = a\sqrt 3 .\)

Áp dụng định lý Pitago cho \(\Delta AA'M\) vuông tại \(A\) ta có: \(AA' = \sqrt {A'{M^2} - A{M^2}} \) \( = \sqrt {9{a^2} - 3{a^2}}  = a\sqrt 6 \)

\( \Rightarrow {V_{ABC.A'B'C'}} = AA'.{S_{ABC}}\) \( = a\sqrt 6 .{a^2}\sqrt 3  = 3{a^3}\sqrt 2 \)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com