Gọi \({z_1},\,\,{z_2}\) là hai nghiệm phức của phương trình \({z^2} - 2z + 2 = 0\). Tập hợp các
Gọi \({z_1},\,\,{z_2}\) là hai nghiệm phức của phương trình \({z^2} - 2z + 2 = 0\). Tập hợp các điểm biểu diễn của số phức \(w\) thỏa mãn \(\left| {w - {z_1}} \right| = \left| {w - {z_2}} \right|\) là đường thẳng có phương trình
Đáp án đúng là: D
Quảng cáo
- Giải phương trình bậc hai tìm hai số phức \({z_1},\,\,{z_2}\) .
- Đặt \(w = x + yi\,\,\left( {x,\,\,y \in \mathbb{R}} \right)\), thay vào giả thiết tìm mối quan hệ giữa \(x,\,\,y\).
- Sử dụng công thức tính môđun số phức: \(z = a + bi \Rightarrow \left| z \right| = \sqrt {{a^2} + {b^2}} \).
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












