Có bao nhiêu số nguyên \(m\) thuộc \(\left[ { - 2020;2020} \right]\) sao cho phương trình \({4^{{{\left( {x -
Có bao nhiêu số nguyên \(m\) thuộc \(\left[ { - 2020;2020} \right]\) sao cho phương trình \({4^{{{\left( {x - 1} \right)}^2}}} - 4m{.2^{{x^2} - 2x}} + 3m - 2 = 0\) có bốn nghiệm phân biệt?
Đáp án đúng là: B
Quảng cáo
- Đặt ẩn phụ \(t = {2^{{x^2} - 2x}}\,\,\left( {t \ge \dfrac{1}{2}} \right)\). Đưa phương trình về phương trình bậc hai ẩn \(t\).
- Để phương trình ban đầu có 4 nghiệm phân biệt thì phương trình bậc hai ẩn \(t\) phải có 2 nghiệm \(t\) phân biệt thỏa mãn \(t > \dfrac{1}{2}\).
- Giải hệ điều kiện: \(\left\{ \begin{array}{l}\Delta > 0\\{t_1} + {t_2} > \dfrac{1}{4}\\\left( {{t_1} - \dfrac{1}{2}} \right)\left( {{t_2} - \dfrac{1}{2}} \right) > 0\end{array} \right.\), sử dụng định lí Vi-ét: \(\left\{ \begin{array}{l}{t_1} + {t_2} = - \dfrac{b}{a}\\{t_1}{t_2} = \dfrac{c}{a}\end{array} \right.\).
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












