Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác cân đỉnh \(A\). Biết \(BC = a\sqrt 3 \) và
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác cân đỉnh \(A\). Biết \(BC = a\sqrt 3 \) và \(\angle ABC = {30^0}\), cạnh bên \(AA' = a\). Gọi \(M\) là điểm thỏa mãn \(2\overrightarrow {CM} = 3\overrightarrow {CC'} \). Gọi \(\alpha \) là góc tạo bởi hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {AB'M} \right)\), khi đó \(\sin \alpha \) có giá trị bằng:
Đáp án đúng là: D
Quảng cáo
- Chứng minh \(\angle \left( {\left( {ABC} \right);\left( {AB'M} \right)} \right) = \angle \left( {\left( {B'C'N} \right);\left( {B'MN} \right)} \right)\).
- Trong \(\left( {A'B'C'} \right)\) kẻ \(C'H \bot B'N\), chứng minh \(\angle \left( {\left( {B'C'N} \right);\left( {B'MN} \right)} \right) = \angle \left( {C'H;MH} \right)\).
- Sử dụng diện tích tam giác và định lí Cosin trong tam giác tính \(C'H\).
- Áp dụng tỉ số lượng giác của góc nhọn trong tam giác vuông tính \(\sin \alpha \).
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com














