Cho khối trụ có hai đáy là \(\left( O \right)\) và \(\left( {O'} \right)\). \(AB,\,\,CD\) lần lượt là
Cho khối trụ có hai đáy là \(\left( O \right)\) và \(\left( {O'} \right)\). \(AB,\,\,CD\) lần lượt là hai đường kính của \(\left( O \right)\) và \(\left( {O'} \right)\), góc giữa \(AB\) và \(CD\) bằng \({30^0}\), \(AB = 6\) và thể tích khối tứ diện \(ABCD\) bằng 30. Thể tích khối trụ đã cho bằng:
Đáp án đúng là: B
Quảng cáo
Gọi \(A',\,\,B'\) lần lượt là hình chiếu của \(A,\,\,B\) lên đường tròn \(\left( O \right)\).
\(C',\,\,D'\) lần lượt là hình chiếu của \(C,\,\,D\) lên đường tròn \(\left( {O'} \right)\).
- Phân chia khối đa diện: \({V_{AC'BD'.A'CB'D}} = {V_{ABCD}} + {V_{A.A'CD}} + {V_{B.B'CD}} + {V_{C.C'AB}} + {V_{D.D'AB}}\), chứng minh \({V_{A.A'CD}} = {V_{B.B'CD}} = {V_{C.C'AB}} = {V_{D.D'AB}} = \dfrac{1}{6}{V_{AC'BD'.A'CB'D}}\), từ đó tính \({V_{AC'BD'.A'CB'D}}\).
- Tính diện tích tam giác \(OAC'\), sử dụng công thức \({S_{OAC'}} = \dfrac{1}{2}OA.OC'.\sin \angle AOC'\), từ đó suy ra \({S_{AC'BD'}}\).
- Tính chiều cao \(AA'\): \(AA' = \dfrac{{{V_{AC'BD'.A'CB'D}}}}{{{S_{AC'BD'}}}}\).
- Tính thể tích khối trụ có chiều cao \(h\), bán kính đáy \(r\): \(V = \pi {r^2}h\).
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













