Gọi \(S\) là tập nghiệm của phương trình \(\left( {{2^x} - 2x} \right)\sqrt {{3^{{2^x}}} - m} = 0\)
Gọi \(S\) là tập nghiệm của phương trình \(\left( {{2^x} - 2x} \right)\sqrt {{3^{{2^x}}} - m} = 0\) (với \(m\) là tham số thực). Có tất cả bao nhiêu giá trị nguyên của \(m \in \left[ { - 2020;2020} \right]\) để tập hợp \(S\) có hai phần tử?
Đáp án đúng là: A
Quảng cáo
- Tìm khoảng giá trị của \(\cos x\) với \(x \in \left( {\dfrac{\pi }{2};\dfrac{{3\pi }}{2}} \right)\) , từ đó suy ra khoảng giá trị của \(f\left( {\cos x} \right),\,\,f\left( {f\left( {\cos x} \right)} \right)\).
- Phương trình \(f\left( {f\left( {\cos x} \right)} \right) = m\) có nghiệm khi và chỉ khi \(m\) thuộc khoảng giá trị của \(f\left( {f\left( {\cos x} \right)} \right)\).
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













