Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hình nón có góc ở đỉnh bằng \({120^0}\) và đường cao bằng \(2.\) Tính diện tích xung quanh

Câu hỏi số 416825:
Thông hiểu

Cho hình nón có góc ở đỉnh bằng \({120^0}\) và đường cao bằng \(2.\) Tính diện tích xung quanh của hình nón đã cho.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:416825
Phương pháp giải

- Sử dụng tính chất tam giác cân: Đường trung tuyến đồng thời là đường phân giác.

- Sử dụng tỉ số lượng giác của góc nhọn trong tam giác vuông tính độ dài đường sinh \(l\) và bán kính đáy \(r\) của hình nón.

- Áp dụng công thức tính diện tích xung quanh của hình nón có độ dài đường sinh \(l\) và bán kính đáy \(r\) là \({S_{xq}} = \pi rl\).

Giải chi tiết

Gọi \(S\) là đỉnh hình nón, \(AB\) là 1 đường kính của hình nón và \(O\) là tâm đường tròn đáy của hình nón.

Khi đó ta có \(\angle ASB = {120^0}\) và \(h = SO = 2\).

Ta có: \(\Delta SAB\) cân tại \(S\) suy ra \(SO\) là phân giác của \(\angle ASB\) \( \Rightarrow \angle ASO = \dfrac{1}{2}\angle ASB = {60^0}\).

Xét tam giác vuông \(SOA\) có: \(r = OA = SO.\tan {60^0} = 2\sqrt 3 \), \(l = SA = \dfrac{{SO}}{{\cos {{60}^0}}} = 4\).

Vậy diện tích xung quanh của hình nón là: \({S_{xq}} = \pi rl = \pi .2\sqrt 3 .4 = 8\sqrt 3 \pi \).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com