Có bao nhiêu giá trị nguyên của hàm số \(m\) để phương trình \({z^2} - 2mz + 6m - 5 = 0\) có hai
Có bao nhiêu giá trị nguyên của hàm số \(m\) để phương trình \({z^2} - 2mz + 6m - 5 = 0\) có hai nghiệm phức phân biệt \({z_1},\,\,{z_2}\) thỏa mãn \(\left| {{z_1}} \right| = \left| {{z_2}} \right|?\)
Đáp án đúng là: D
Quảng cáo
- Tìm điều kiện để phương trình bậc hai có 2 nghiệm phức phân biệt: \(\Delta < 0\) hoặc \(\Delta ' < 0\).
- Phương trình bậc hai có 2 nghiệm phức phân biệt thì hai số phức đó là hai số phức liên hợp nên luôn thỏa mãn điều kiện \(\left| {{z_1}} \right| = \left| {{z_2}} \right|\).
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












