Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông, \(AB = a.\) Cạnh \(SA\) vuông góc với đáy, \(SA

Câu hỏi số 418103:
Vận dụng

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông, \(AB = a.\) Cạnh \(SA\) vuông góc với đáy, \(SA = a\sqrt 2 .\) Khoảng cách từ trọng tâm \(G\) của \(\Delta ABC\) đến mặt phẳng \(\left( {SCD} \right)\) bằng:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:418103
Phương pháp giải

Gọi \(O\) là giao điểm của \(AC\) và \(BD.\)

Ta có: \(\dfrac{{GD}}{{BD}} = \dfrac{{d\left( {G;\,\left( {SCD} \right)} \right)}}{{d\left( {B;\,\,\left( {SCD} \right)} \right)}} = \dfrac{2}{3}\) \( \Rightarrow d\left( {G;\,\,\left( {SCD} \right)} \right) = \dfrac{2}{3}d\left( {B;\,\,\left( {SCD} \right)} \right)\)  

Mà \(AB//CD \Rightarrow AB//\left( {SCD} \right)\) \( \Rightarrow d\left( {B;\,\,\left( {SCD} \right)} \right) = d\left( {A;\,\,\left( {SCD} \right)} \right)\)

Giải chi tiết

Gọi \(O\) là giao điểm của \(AC\) và \(BD.\)

Ta có: \(\dfrac{{GD}}{{BD}} = \dfrac{{d\left( {G;\,\left( {SCD} \right)} \right)}}{{d\left( {B;\,\,\left( {SCD} \right)} \right)}} = \dfrac{2}{3}\) \( \Rightarrow d\left( {G;\,\,\left( {SCD} \right)} \right) = \dfrac{2}{3}d\left( {B;\,\,\left( {SCD} \right)} \right)\)  

Mà \(AB//CD \Rightarrow AB//\left( {SCD} \right)\) \( \Rightarrow d\left( {B;\,\,\left( {SCD} \right)} \right) = d\left( {A;\,\,\left( {SCD} \right)} \right)\)

Ta có: \(\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\end{array} \right. \Rightarrow CD \bot \left( {SAD} \right)\)

Trong mặt phẳng \(\left( {SAD} \right),\) dựng \(AH \bot SD\) \( \Rightarrow CD \bot AH\)

\( \Rightarrow AH \bot \left( {SCD} \right) \Rightarrow d\left( {A;\,\,\left( {SCD} \right)} \right) = AH\)

Áp dụng hệ thức lượng trong \(SAD\) vuông tại \(A\) có đường cao \(AH\) ta có:

\(AH = \dfrac{{SA.AD}}{{\sqrt {S{A^2} + A{D^2}} }} = \dfrac{{a\sqrt 2 .a}}{{\sqrt {{{\left( {a\sqrt 2 } \right)}^2} + {a^2}} }}\) \( = \dfrac{{{a^2}\sqrt 2 }}{{a\sqrt 3 }} = \dfrac{{a\sqrt 6 }}{3}\)

\(\begin{array}{l} \Rightarrow d\left( {B;\,\,\left( {SCD} \right)} \right) = \dfrac{{a\sqrt 6 }}{3}\\ \Rightarrow d\left( {G;\,\,\left( {SCD} \right)} \right) = \dfrac{2}{3}d\left( {B;\,\,\left( {SCD} \right)} \right) = \dfrac{2}{3}.\dfrac{{a\sqrt 6 }}{3} = \dfrac{{2a\sqrt 6 }}{9}.\end{array}\)

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com