Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác \(ABC\)  vuông tại \(A\)  có \(AB = AC.\) Qua \(A\) kẻ đường thẳng \(xy\)  sao cho \(B,C\)

Câu hỏi số 418648:
Vận dụng

Cho tam giác \(ABC\)  vuông tại \(A\)  có \(AB = AC.\) Qua \(A\) kẻ đường thẳng \(xy\)  sao cho \(B,C\) nằm cùng phía với \(xy.\) Kẻ \(BD\)  và \(CE\)  vuông góc với \(xy.\) Chọn câu đúng.

Đáp án đúng là: A

Quảng cáo

Câu hỏi:418648
Phương pháp giải

+ Dựa vào hệ quả của trường hợp bằng nhau thứ ba của tam giác để chứng minh các cặp tam giác bằng nhau

+ Từ các cặp cạnh tương ứng bằng nhau ta lập luận để suy ra mối quan hệ đúng.

Giải chi tiết

Ta có: \({\widehat A_1} + {\widehat A_2} = {90^0}\,\,\,\left( {do\,\,\,\widehat {BAC} = {{90}^0}} \right)\)

Mà \({\widehat A_1} + {\widehat B_2} = {90^0}\) vì tam giác \(ABD\)  vuông tại \(D.\)

\( \Rightarrow {\widehat B_2} = {\widehat A_2}\)  (cùng phụ với \({\widehat A_1}\)).

Lại có \({\widehat A_2} + {\widehat C_1} = {90^0}\) vì tam giác \(ACE\)  vuông tại \(E\)

\( \Rightarrow {\widehat A_1} = {\widehat C_1}\) (cùng phụ với \({\widehat A_2}\)).

Xét hai tam giác vuông \(BDA\)  và \(AEC\)  có:

\(\widehat D = \widehat E = {90^0}\); \(AB = AC\) (gt) và\(\widehat {{A_1}} = \widehat {{C_1}}\) (cmt)

\( \Rightarrow \Delta BA{\rm{D}} = \Delta ACE\) (cạnh huyền – góc nhọn)

Suy ra \(BD = AE\) (hai cạnh tương ứng), \(CE = AD\) (hai cạnh tương ứng).

Do đó \(DE = AD + AE = CE + BD.\)

Chọn A.

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com