Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Một sóng cơ truyền trên sợi dây dài, nằm ngang, dọc theo chiều dương của trục Ox với tốc

Câu hỏi số 418841:
Vận dụng cao

Một sóng cơ truyền trên sợi dây dài, nằm ngang, dọc theo chiều dương của trục Ox với tốc độ truyền sóng là v và biên độ không đổi. Tại thời điểm to = 0, phần tử tại O bắt đầu dao động từ vị trí cân bằng theo chiều âm của trục Ou. Tại thời điểm t1 = 0,3 s hình ảnh của một đoạn dây như hình vẽ. Khi đó vận tốc dao động của phần tử tại D là v­D = \(\dfrac{{\rm{\pi }}}{{\rm{8}}}{\rm{v}}\) và quãng đường phần tử E đã đi được là 24 cm. Biết khoảng cách cực đại giữa hai phần tử C, D là 5cm. Phương trình truyền sóng là

Đáp án đúng là: C

Quảng cáo

Câu hỏi:418841
Phương pháp giải

Phương trình sóng tổng quát: \(u = a\cos \left( {\omega t + \varphi  - \dfrac{{2\pi x}}{\lambda }} \right)\)

Giải chi tiết

Tại thời điểm \({t_0} = 0\), phần tử tại O bắt đầu dao động từ VTCB theo chiều âm của trục Ou

→ pha ban đầu của phần tử O là: \(\varphi  = \dfrac{\pi }{2}\,\,\left( {rad} \right)\)

Nhận xét: trạng thái của O ở hai thời điểm \({t_0} = 0\) và \({t_1} = 0,3\,\,s\) giống nhau

\( \Rightarrow \Delta t = {t_1} - {t_0} = 0,3\,\,\left( s \right) = mT\)

Gọi độ dài của 1 ô là a → OE = λ = 6 ô \( \Rightarrow OE = \lambda  = 6a \Rightarrow \lambda  = 6a \Rightarrow a = \dfrac{\lambda }{6}\)

Độ lệch pha giữa hai điểm C và D là: \(\Delta {\varphi _{C/D}} = \dfrac{{2\pi .CD}}{\lambda } = \dfrac{{2\pi .\lambda }}{{6\lambda }} = \dfrac{\pi }{3}\,\,\left( {rad} \right)\)

Vận tốc của điểm D là: \({v_D} = \dfrac{\pi }{8}v = \dfrac{\pi }{8}.\left( {\lambda f} \right) = \dfrac{\pi }{8}.\lambda .\dfrac{\omega }{{2\pi }} = \dfrac{{\lambda \omega }}{{16}}\)

Nhận xét: D cách đỉnh sóng đoạn bằng \(\dfrac{a}{2} \Leftrightarrow \dfrac{a}{{12}}\) (ứng với góc \(\dfrac{\pi }{6}\))

\(\begin{array}{l} \Rightarrow {x_D} = \dfrac{{A\sqrt 3 }}{2} \Rightarrow {v_D} = \dfrac{{A\omega }}{2}\\ \Rightarrow \dfrac{{\lambda \omega }}{{16}} = \dfrac{{A\omega }}{2} \Rightarrow 16A = 2\lambda  \Rightarrow A = \dfrac{{2\lambda }}{{16}} = \dfrac{\lambda }{8}\end{array}\)

Khoảng cách giữa hai điểm C và D là: \(\Delta  = \sqrt {{d^2} + {{\left( {\Delta u} \right)}^2}} \,\,\left( * \right)\)

Để \({\Delta _{\max }} \Rightarrow {\left( {\Delta u} \right)_{\max }}\)

Ta có \({\left( {\Delta u} \right)_{\max }} = 2a\sin \dfrac{{\Delta \varphi }}{2} = a\)

Thay vào (*) ta có: \({5^2} = {\left( {\dfrac{\lambda }{6}} \right)^2} + {a^2} = {\left( {\dfrac{\lambda }{6}} \right)^2} + {\left( {\dfrac{\lambda }{8}} \right)^2} \Rightarrow \lambda  = 24\,\,\left( {cm} \right)\)

Biên độ \(A = \dfrac{\lambda }{8} = \dfrac{{24}}{8} = 3\,\,\left( {cm} \right)\)

Thời gian sóng truyền từ O tới E là T

\(\begin{array}{l} \Rightarrow {S_E} = \left( {m - 1} \right).4A \Rightarrow 24 = \left( {m - 1} \right).4.3 \Rightarrow m = 3\\ \Rightarrow 0,3\,\,\left( s \right) = 3T \Rightarrow T = 0,1\,\,\left( s \right) \Rightarrow \omega  = \dfrac{{2\pi }}{T} = 20\pi \,\,\left( {rad/s} \right)\end{array}\)

Phương trình sóng là: \(u = A\cos \left( {20\pi t + \dfrac{\pi }{2} - \dfrac{{2\pi x}}{{24}}} \right) = 3\cos \left( {20\pi t + \dfrac{\pi }{2} - \dfrac{{\pi x}}{{12}}} \right)\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com