Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGTD Bách Khoa và TN THPT - Ngày 10-11/01/2026
↪ ĐGTD Bách Khoa (TSA) - Trạm 5 ↪ TN THPT - Trạm 2
Giỏ hàng của tôi

Tìm \(m\) để đường thẳng \(\left( d \right):y = x + m - 1\) cắt parabol \(\left( P \right):y =

Câu hỏi số 420965:
Vận dụng cao

Tìm \(m\) để đường thẳng \(\left( d \right):y = x + m - 1\) cắt parabol \(\left( P \right):y = \dfrac{1}{2}{x^2}\) tại 2 điểm \(A\) và \(B\) sao cho \(\Delta AOB\) vuông tại \(O\) (với \(O\) là gốc tọa độ).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:420965
Phương pháp giải

- Xét phương trình hoành độ giao điểm, tìm điều kiện để phương trình có 2 nghiệm phân biệt khác 0.

- Gọi \(A\left( {a;a + m - 1} \right),\,\,B\left( {b;b + m - 1} \right)\,\,\,\left( {a < 0,\,\,b > 0} \right)\). Tính \(\tan \angle AOM,\,\,\tan \angle BON\).

- Gọi \(M,\,\,N\) lần lượt là hình chiếu của \(A,\,\,B\) lên trục \(Ox\), chứng minh \(\angle AOM + \angle BON = {90^0}\) \( \Rightarrow \tan \angle AOM.\tan \angle BON = 1\).

- Áp dụng định lí Vi-ét. Sau đó giải phương trình tìm \(m\) và đối chiếu điều kiện.

Giải chi tiết

Xét phương trình hoành độ giao điểm \(\dfrac{1}{2}{x^2} = x + m - 1 \Leftrightarrow {x^2} - 2x - 2m + 2 = 0\,\,\left( * \right)\).

Để đường thẳng \(\left( d \right)\) cắt \(\left( P \right)\) tại 2 điểm phân biệt và ba điểm \(O,\,\,A,\,\,B\) tạo thành 1 tam giác thì phương trình (*) phải có 2 nghiệm phân biệt khác 0.

\( \Rightarrow \left\{ \begin{array}{l}\Delta ' > 0\\{0^2} - 2.0 - 2m + 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 + 2m - 2 > 0\\ - 2m + 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2m - 1 > 0\\m \ne 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > \dfrac{1}{2}\\m \ne 1\end{array} \right.\).

Gọi \(A\left( {a;a + m - 1} \right),\,\,B\left( {b;b + m - 1} \right)\,\,\,\left( {a < 0,\,\,b > 0} \right)\).

Gọi \(M,\,\,N\) là hình chiếu vuông góc của \(A,\,\,B\) lên trục \(Ox\). Khi đó ta có \(OM = \left| {} \right|\)

\(OM = \left| {{x_A}} \right| =  - a,\,\,AM = \left| {{y_A}} \right| = a + m - 1\) (do \({y_A} = \dfrac{1}{2}x_A^2 \ge 0\)).

\(ON = \left| {{x_B}} \right| = b,\,\,BN = \left| {{y_B}} \right| = b + m - 1\) (do \({y_B} = \dfrac{1}{2}x_B^2 \ge 0\)).

Xét tam giác vuông \(OAM\) có: \(\tan \angle AOM = \dfrac{{AM}}{{OM}} = \dfrac{{a + m - 1}}{{ - a}}\).

Xét tam giác vuông \(OBM\) có: \(\tan \angle BON = \dfrac{{BN}}{{ON}} = \dfrac{{b + m - 1}}{b}\).

Vì \(\angle AOM + \angle BON = {90^0}\) nên \(\tan \angle AOM.\tan \angle BON = 1\).

\(\begin{array}{l} \Rightarrow \dfrac{{a + m - 1}}{{ - a}}.\dfrac{{b + m - 1}}{b} = 1\\ \Leftrightarrow ab + \left( {m - 1} \right)\left( {a + b} \right) + {\left( {m - 1} \right)^2} =  - ab\\ \Leftrightarrow 2ab + \left( {m - 1} \right)\left( {a + b} \right) + {\left( {m - 1} \right)^2} = 0\,\,\,\,(**)\end{array}\)

Áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}a + b = 2\\ab =  - 2m + 2\end{array} \right.\).

Thay vào (**) ta có:

\(\begin{array}{l}2\left( { - 2m + 2} \right) + \left( {m - 1} \right).2 + {\left( {m - 1} \right)^2} = 0\\ \Leftrightarrow  - 4m + 4 + 2m - 2 + {m^2} - 2m + 1 = 0\\ \Leftrightarrow {m^2} - 4m + 3 = 0\\ \Leftrightarrow {m^2} - m - 3m + 3 = 0\\ \Leftrightarrow m\left( {m - 1} \right) - 3\left( {m - 1} \right) = 0\\ \Leftrightarrow \left( {m - 1} \right)\left( {m - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}m - 1 = 0\\m - 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 1\,\,\,\,\left( {ktm} \right)\\m = 3\,\,\,\,\left( {tm} \right)\end{array} \right.\end{array}\)

Vậy \(m = 3\).

Chọn A.

Chú ý khi giải

Các em học sinh cần lưu ý, để \(OAB\) là tam giác thì phương trình (*) cần có hai nghiệm phân biệt khác \(0.\) Tránh chọn nhầm đáp án B do không loại nghiệm triệt để.

Đáp án cần chọn là: A

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com