Cho biểu thức \(P = \left( {\dfrac{1}{{\sqrt x + 1}} - \dfrac{1}{{\sqrt x - 1}}} \right).\dfrac{{x -
Cho biểu thức \(P = \left( {\dfrac{1}{{\sqrt x + 1}} - \dfrac{1}{{\sqrt x - 1}}} \right).\dfrac{{x - 1}}{{2\sqrt x + 1}}\) (với \(x \ge 0,\,\,x \ne 1\)).
Trả lời cho các câu 422965, 422966 dưới đây:
Rút gọn biểu thức \(P\).
Đáp án đúng là: A
Với \(x \ge 0,\,\,x \ne 1\) ta có:
\(\begin{array}{l}\,\,\,\,\,\,P = \left( {\dfrac{1}{{\sqrt x + 1}} - \dfrac{1}{{\sqrt x - 1}}} \right).\dfrac{{x - 1}}{{2\sqrt x + 1}}\\ \Leftrightarrow P = \dfrac{{\sqrt x - 1 - \sqrt x - 1}}{{\left( {\sqrt x + 1} \right).\left( {\sqrt x - 1} \right)}}.\dfrac{{x - 1}}{{2\sqrt x + 1}}\\ \Leftrightarrow P = \dfrac{{ - 2}}{{x - 1}}.\dfrac{{x - 1}}{{2\sqrt x + 1}}\\ \Leftrightarrow P = \dfrac{{ - 2}}{{2\sqrt x + 1}}\end{array}\)
Vậy với \(x \ge 0,\,\,x \ne 1\) thì \(P = - \dfrac{2}{{2\sqrt x + 1}}\).
Tìm tất cả các giá trị của \(x\) để \(P \le - 1\).
Đáp án đúng là: D
Với \(x \ge 0,\,\,x \ne 1\) ta có:
\(\begin{array}{l}\,\,\,\,\,P \le - 1\\ \Leftrightarrow \dfrac{{ - 2}}{{2\sqrt x + 1}} \le - 1\\ \Leftrightarrow \dfrac{{ - 2}}{{2\sqrt x + 1}} + 1 \le 0\\ \Leftrightarrow \dfrac{{ - 2 + 2\sqrt x + 1}}{{2\sqrt x + 1}} \le 0\\ \Leftrightarrow \dfrac{{2\sqrt x - 1}}{{2\sqrt x + 1}} \le 0\end{array}\)
Do \(2\sqrt x + 1 \ge 1 > 0\,\,\forall x \ge 0,\,\,x \ne 1\) nên \(\dfrac{{2\sqrt x - 1}}{{2\sqrt x + 1}} \le 0 \Leftrightarrow 2\sqrt x - 1 \le 0\)\( \Leftrightarrow \sqrt x \le \dfrac{1}{2} \Leftrightarrow x \le \dfrac{1}{4}\)
Kết hợp điều kiện \(x \ge 0,\,\,x \ne 1\) ta có: \(0 \le x \le \dfrac{1}{4}\).
Vậy với \(0 \le x \le \dfrac{1}{4}\) thì \(P \le - 1\).
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com