Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Giải phương trình \(2{x^2} - 5x + 3 = 0\).

Câu hỏi số 422972:
Vận dụng

Giải phương trình \(2{x^2} - 5x + 3 = 0\).

Đáp án đúng là: D

Câu hỏi:422972
Giải chi tiết

Ta có: \(\Delta  = {\left( { - 5} \right)^2} - 4.2.3 = 1 > 0\), do đó phương trình \(2{x^2} - 5x + 3 = 0\) có 2 nghiệm phân biệt \(\left[ \begin{array}{l}{x_1} = \dfrac{{5 + 1}}{{2.2}} = \dfrac{3}{2}\\{x_2} = \dfrac{{5 - 1}}{{2.2}} = 1\end{array} \right.\).

Vậy tập nghiệm của phương trình là \(S = \left\{ {\dfrac{3}{2};1} \right\}\).

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com