Cho đường tròn tâm \(O\), đường kính \(AB\) và \(d\) là một tiếp tuyến của đường tròn
Cho đường tròn tâm \(O\), đường kính \(AB\) và \(d\) là một tiếp tuyến của đường tròn \(\left( O \right)\) tại điểm \(A\). Trên đường thẳng \(d\) lấy điểm \(M\) (khác \(A\)) và trên đoạn \(OB\) lấy điểm \(N\) (khác \(O\) và \(B\)). Đường thẳng \(MN\) cắt đường tròn \(\left( O \right)\) tại hai điểm \(C\) và \(D\) sao cho \(C\) nằm giữa \(M\) và \(D\). Gọi \(H\) là trung điểm của đoạn thẳng \(CD\).
a) Chứng minh tứ giác \(AOHM\) nội tiếp được đường trong đường tròn.
b) Kẻ đoạn \(DK//MO\) (\(K\) nằm trên đường thẳng \(AB\)). Chứng minh rằng \(\angle MDK = \angle BAH\) và \(M{A^2} = MC.MD.\)
c) Đường thẳng \(BC\) cắt đường thẳng \(OM\) tại điểm \(I\). Chứng minh rằng đường thẳng \(AI\) song song với đường thẳng \(BD\).
Quảng cáo
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










