Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho đường tròn tâm \(O\), đường kính \(AB\) và \(d\) là một tiếp tuyến của đường tròn

Câu hỏi số 422981:
Vận dụng

Cho đường tròn tâm \(O\), đường kính \(AB\) và \(d\) là một tiếp tuyến của đường tròn \(\left( O \right)\) tại điểm \(A\). Trên đường thẳng \(d\) lấy điểm \(M\) (khác \(A\)) và trên đoạn \(OB\) lấy điểm \(N\) (khác \(O\) và \(B\)). Đường thẳng \(MN\) cắt đường tròn \(\left( O \right)\) tại hai điểm \(C\) và \(D\) sao cho \(C\) nằm giữa \(M\) và \(D\). Gọi \(H\) là trung điểm của đoạn thẳng \(CD\).

a) Chứng minh tứ giác \(AOHM\) nội tiếp được đường trong đường tròn.

b) Kẻ đoạn \(DK//MO\) (\(K\) nằm trên đường thẳng \(AB\)). Chứng minh rằng \(\angle MDK = \angle BAH\) và \(M{A^2} = MC.MD.\)

c) Đường thẳng \(BC\) cắt đường thẳng \(OM\) tại điểm \(I\). Chứng minh rằng đường thẳng \(AI\) song song với đường thẳng \(BD\).

Quảng cáo

Câu hỏi:422981
Giải chi tiết

a) Chứng minh tứ giác \(AOHM\) nội tiếp được đường trong đường tròn.

Ta có: \(MA\) là tiếp tuyến của \(\left( O \right)\) \( \Rightarrow \angle MAO = {90^0}\)

\(H\) là trung điểm của \(CD\) \( \Rightarrow OH \bot CD = \left\{ H \right\}\) (quan hệ giữa đường kính và dây cung)

\( \Rightarrow \angle OHC = \angle OHM = {90^0}\)

Xét tứ giác \(AOHM\) ta có:

\(\angle MAO + \angle OHM = {90^0} + {90^0} = {180^0}\)

Mà hai góc này là hai góc đối diện.

\( \Rightarrow AOHM\) là tứ giác nội tiếp. (đpcm)

b) Kẻ đoạn \(DK//MO\) (\(K\) nằm trên đường thẳng \(AB\)). Chứng minh rằng \(\angle MDK = \angle BAH\)\(M{A^2} = MC.MD.\)

Ta có: \(DK//MO\,\,\left( {gt} \right)\)

\( \Rightarrow \angle MDK = \angle DMO\) (hai góc so le trong).

Vì \(AOHM\) là tứ giác nội tiếp (cmt)

\( \Rightarrow \angle HMO = \angle HAO\) (hai góc nội tiếp cùng chắn cung \(OH\))

Hay \(\angle BAH = \angle DMO\)

\( \Rightarrow \angle BAH = \angle MDK\,\,\left( { = \angle DMO} \right)\) (đpcm).

Xét \(\Delta AMC\) và \(\Delta DMA\) ta có:

\(\angle M\,\,\,chung\)

\(\angle MDA = \angle MAC\) (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung \(AC\))

\(\begin{array}{l} \Rightarrow \Delta AMC \sim \Delta DMA\,\,\,\left( {g - g} \right)\\ \Rightarrow \dfrac{{AM}}{{DM}} = \dfrac{{MC}}{{MA}} \Leftrightarrow M{A^2} = MC.MD\,\,\,\left( {cmt} \right).\end{array}\)

c) Đường thẳng \(BC\) cắt đường thẳng \(OM\) tại điểm \(I\). Chứng minh rằng đường thẳng \(AI\) song song với đường thẳng \(BD\).

Gọi \(E\) là giao điểm của \(MO\) và \(BD\). Kéo dài \(DK\) cắt \(BC\) tại \(F\).

Xét tứ giác \(AHKD\) có \(\angle HAK = \angle KDH\) (câu b)

\( \Rightarrow AHKD\) là tứ giác nội tiếp (hai đỉnh kề một cạnh cùng nhìn cạnh đối diện các góc bằng nhau)

\( \Rightarrow \angle DAK = \angle DHK\) (góc nội tiếp cùng chắn cung \(DK\))

Mà \(\angle DAK = \angle DCB\) (góc nội tiếp cùng chắn cung \(DB\))

Nên \(\angle DHK = \angle DCB\)

Hai góc này ở vị trí đồng vị nên \(HK//CB \Rightarrow HK//CF\).

Trong tam giác \(DCF\), \(HK//CF,\) \(H\) là trung điểm của \(CD\) nên \(K\) là trung điểm của \(DF\).

\( \Rightarrow DK = KF\)

Lại có \(DK//MO \Rightarrow DF//IE\)

\( \Rightarrow \dfrac{{DK}}{{OE}} = \dfrac{{FK}}{{OI}}\left( { = \dfrac{{BK}}{{BO}}} \right)\)

Mà \(DK = FK\left( {cmt} \right)\) nên \(OE = OI\).

Xét tứ giác \(AIBE\) có hai đường chéo \(IE\) và \(AB\) cắt nhau tại trung điểm \(O\) của mỗi đường nên \(AIBE\) là hình hình hành \( \Rightarrow AI//BE \Rightarrow AI//BD\) (đpcm).

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com