Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Nghiệm của phương trình \({\cos ^2}x - \cos x = 0\) thỏa mãn điều kiện \( - \pi  < x < 0\)

Câu hỏi số 433309:
Thông hiểu

Nghiệm của phương trình \({\cos ^2}x - \cos x = 0\) thỏa mãn điều kiện \( - \pi  < x < 0\) là:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:433309
Phương pháp giải

- Đưa phương trình về dạng phương trình tích.

- Giải phương trình lượng giác cơ bản.

- Giải bất phương trình \( - \pi  < x < 0\), tìm nghiệm \(x\) thỏa mãn.

Giải chi tiết

Ta có: \({\cos ^2}x - \cos x = 0 \Leftrightarrow \cos x\left( {\cos x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\cos x = 0\\\cos x = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{2} + k\pi \\x = \pi  + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).

+ Xét họ nghiệm \(x = \dfrac{\pi }{2} + k\pi \).

Cho \( - \pi  < x < 0 \Leftrightarrow  - \pi  < \dfrac{\pi }{2} + k\pi  < 0 \Leftrightarrow  - \dfrac{3}{2} < k <  - \dfrac{1}{2}\).

Mà \(k \in \mathbb{Z} \Rightarrow k =  - 1 \Rightarrow x =  - \dfrac{\pi }{2}\).

+ Xét họ nghiệm \(x = \pi  + k2\pi \).

Cho \( - \pi  < \pi  + k2\pi  < 0 \Leftrightarrow  - 1 < k <  - \dfrac{1}{2}\).

Mà \(k \in \mathbb{Z} \Rightarrow k \in \emptyset \).

Vậy phương trình đã cho có duy nhất 1 nghiệm thỏa mãn là \(x =  - \dfrac{\pi }{2}\).

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com