Tìm tất cả các giá trị thực của tham số\(m\) sao cho điểm cực tiểu của đồ thị hàm số
Tìm tất cả các giá trị thực của tham số\(m\) sao cho điểm cực tiểu của đồ thị hàm số \(y = {x^3} + {x^2} + mx - 1\) nằm bên phải trục tung?
Đáp án đúng là: A
Quảng cáo
- Tính \(y'\).
- Tìm điều kiện để phương trình \(y' = 0\) có 2 nghiệm phân biệt.
- Hàm đa thức bậc ba \(y = a{x^3} + b{x^2} + cx + d\) có 2 điểm cực tiểu và \(a > 0\) thì \({x_{CT}} > {x_{CD}}\).
- Giải phương trình \({x_{CT}} > 0\) tìm \(m\).
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












