Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và \(f'\left( x \right) > 0,\,\,\forall x

Câu hỏi số 434785:
Thông hiểu

Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và \(f'\left( x \right) > 0,\,\,\forall x \in \mathbb{R}\). Biết \(f\left( 1 \right) = 2\). Hỏi khẳng định nào sau đây có thể xảy ra?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:434785
Phương pháp giải

Áp dụng tính chất của hàm đồng biến.

Giải chi tiết

Vì \(f'\left( x \right) > 0\,\,\forall x \in \mathbb{R}\) nên hàm số \(y = f\left( x \right)\) đồng biến trên \(\mathbb{R}\).

Do đó ta có:

\(\left\{ \begin{array}{l}f\left( 2 \right) > f\left( 1 \right) = 2\\f\left( 3 \right) > f\left( 1 \right) = 2\end{array} \right. \Rightarrow f\left( 2 \right) + f\left( 3 \right) > 4\), nên mệnh đề A sai.

\(f\left( { - 1} \right) < f\left( 1 \right) = 2\) nên mệnh đề B sai.

\(f\left( 2 \right) > f\left( 1 \right) = 2 \Rightarrow \) Mệnh đề C sai.

Vì \(2018 < 2019 \Rightarrow f\left( {2018} \right) < f\left( {2019} \right)\) nên mệnh đề D đúng.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com