Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Gọi \(a\) là nghiệm của phương trình \(2{\cos ^2}x + \cos x - 1 = 0\) trên khoảng \(\left( {0;\dfrac{\pi

Câu hỏi số 435052:
Thông hiểu

Gọi \(a\) là nghiệm của phương trình \(2{\cos ^2}x + \cos x - 1 = 0\) trên khoảng \(\left( {0;\dfrac{\pi }{2}} \right)\). Tính \(\cos 2a\).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:435052
Phương pháp giải

- Giải phương trình bậc hai đối với một hàm số lượng giác tìm \(\cos x\).

- Chú ý điều kiện \(x \in \left( {0;\dfrac{\pi }{2}} \right) \Rightarrow \cos x > 0\).

- Sử dụng công thức nhân đôi: \(\cos 2a = 2{\cos ^2}a - 1\).

Giải chi tiết

Ta có: \(2{\cos ^2}x + \cos x - 1 = 0 \Leftrightarrow \left[ \begin{array}{l}\cos x = \dfrac{1}{2}\\\cos x =  - 1\end{array} \right.\).

Vì \(x \in \left( {0;\dfrac{\pi }{2}} \right) \Rightarrow \cos x > 0\), do đó \(\cos x = \dfrac{1}{2}\).

Vậy \(\cos 2a = 2{\cos ^2}a - 1 = 2.{\left( {\dfrac{1}{2}} \right)^2} - 1 =  - \dfrac{1}{2}\).

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com