Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Rút gọn biểu thức \(A = \frac{{\sqrt[3]{{{a^7}}}.{a^{\frac{{11}}{3}}}}}{{{a^4},\sqrt[7]{{{a^{ - 5}}}}}}\) với

Câu hỏi số 442395:
Thông hiểu

Rút gọn biểu thức \(A = \frac{{\sqrt[3]{{{a^7}}}.{a^{\frac{{11}}{3}}}}}{{{a^4},\sqrt[7]{{{a^{ - 5}}}}}}\) với \(a > 0\) ta được kết quả \(A = {a^{\frac{m}{n}}}\), trong đó \(m,n \in {\mathbb{N}^*}\) và \(\frac{m}{n}\) là phân số tối giản. Khẳng định nào sau đây đúng?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:442395
Phương pháp giải

Sử dụng các công thức: \(\sqrt[n]{{{a^m}}} = {a^{\frac{m}{n}}}\), \({a^m}.{a^n} = {a^{m + n}},\,\,{a^m}:{a^n} = {a^{m - n}}\).

Giải chi tiết

Ta có \(A = \frac{{\sqrt[3]{{{a^7}}}.{a^{\frac{{11}}{3}}}}}{{{a^4}.\sqrt[7]{{{a^{ - 5}}}}}} = \frac{{{a^{\frac{7}{3}}}.{a^{\frac{{11}}{3}}}}}{{{a^4}.{a^{ - \frac{5}{7}}}}} = \frac{{{a^6}}}{{{a^{\frac{{23}}{7}}}}} = {a^{\frac{{19}}{7}}}\).

Khi đó \(\left\{ \begin{array}{l}m = 19\\n = 7\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{m^2} + {n^2} = 410\\{m^2} - {n^2} = 312\end{array} \right.\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com